
Alexandru Ioan Cuza University
of Iaşi

A Complete Semantics
for Java

PhD Thesis Summary

Author:

Denis Bogdănaş

Adviser:
Prof. Dr.

Dorel Lucanu

May 2015



1 Introduction

Java is the second most popular programming language
(http://langpop.com/), after C and followed by PHP.
Both C and PHP have recently been given formal seman-
tics . Like the authors of the C and PHP semantics, and
many others, we firmly believe that programming langua-
ges must have formal semantics. Moreover, the semantics
should be public and easily accessible, so inconsistencies
are more easily spotted and fixed, and formal analysis to-
ols should be based on such semantics, to eliminate the
semantic gaps and thus errors in such tools. Without a
formal semantics it is impossible to state or prove any-
thing about the language with certainty, including that a
program meets its specification, that a type system is so-
und, or that a compiler or interpreter is correct. While all
analysis tools or implementations for the language invari-
ably incorporate some variant of the language semantics,
or a projection of it, these are hard to access and thus to
asses.

To the best of our knowledge, the most notable at-
tempts to give Java a formal semantics are ASM-Java ,
which uses abstract state machines, and JavaFAN , which
uses term rewriting. However, as discussed in Chapter 2,
these semantics are far from being complete or even well
tested. Each comes with a few sample Java programs il-
lustrating only the defined features, and each can execute
only about half of the other’s programs.

We present K-Java , a semantics for Java which syste-

1

http://langpop.com/


matically defines every single feature listed in the official
definition of Java 1.4, which is the Java Language Speci-
fication (JLS) , a 456-page 18-chapter document. Moreo-
ver, our semantics is thoroughly tested. In fact, we spent
about half the time dedicated to this project to write tests,
which are small Java programs exercising special cases of
features or combinations of them. Specifically, we followed
a Test Driven Development methodology to first develop
the tests for the feature to be defined and interactions
of it with previous features, and then defined the actual
semantics of that feature. This way we produced a com-
prehensive set of 840 tests, which serves as a conformance
test suite not only for our semantics, but also for testing
various other Java tools. Considering that no such con-
formance test suite exists for Java, our tests can also be
regarded as a contribution made by this thesis.

As a semantic framework and development tool for our
Java semantics we chose K . There are several appealing
aspects of K that made it suitable for such a large project.
K provides a convenient notation for modular semantics
of languages, as well as automatically-generated execution
and formal analysis tools for the defined languages, such
as a parser and interpreter, state-space explorer for rea-
chability, and model-checker.

To emphasize that our Java semantics is useful beyond
just providing a reference model for the language, we show
how the builtin model-checker of K can be used to model-
check multi-threaded Java programs. While this illustra-
tes only one possible application of the semantics, other

2



applications have the potential to be similarly derived
from the language-independent tools that are under de-
velopment as part of K.

2 Contributions

The specific contributions of this thesis are:

• K-Java, the first complete semantics of Java 1.4, in-
cluding multi-threading. More generally, K-Java is
the first complete semantics for an imperative stati-
cally typed object-oriented concurrent language. In
order to maintain clarity while handling the seman-
tics great size we split the semantics into two parts,
pipelined together: static semantics (Chapter 5) and
dynamic semantics (Chapter 6).

• A demonstrative application — LTL model-checking
of multithreaded programs (Chapter 7).

• A comprehensive test suite covering all Java con-
structs (Chapter 8).

• Application of the test suite to evaluate the comple-
teness of other executable semantics of Java (Chap-
ter 2).

• A language-independent Abstract Syntax Tree
transformer, used to connect K framework to an
external parser (Chapter 4).

3



3 Chapters Summary

2 Related Work

Here we discuss two other major formal executable seman-
tics of Java and compare them with K-Java. We also recall
other large language semantics that influenced the design
of K-Java.

3 Introduction to K Framework

In this chapter we first include a tutorial for K, for readers
new to K framework, that will help understanding the rest
of the thesis. Then we describe how K can be used to
define semantics in Abstract Syntax Tree format.

4 Parsing Java Programs

Here we present a language-independent parser generator
tool, which we developed alongside K-Java to produce a
Java parser suitable for interfacing with K. This tool was
also used to generate a parser for the K-based PHP se-
mantics.

5 Static Semantics

K-Java is divided into two separate definitions: static se-
mantics (covered in this chapter) and dynamic semantics
(the next chapter).

4



The static semantics takes as input the AST repre-
sentation of a Java program and produces a preprocessed
program as the output. It performs computations that co-
uld be done statically, and are referred in JLS as compile-
time operations. Such computations include converting
each simple class name into a fully qualified class name or
computing the static type of each expression. The prepro-
cessed AST is then passed to the dynamic semantics for
execution.

We choose to present static K-Java from two comple-
menting perspectives. First, the functionality is illustrated
as a set of transformations over programs. Next, the inner
workings are presented as a sequence of phases, detailing
how the configuration content changes during each phase.

6 Dynamic Semantics

This chapter contains the actual definition, using K rules,
of a wide portion of dynamic K-Java. The sections in this
chapter contain:

1. The full configuration of dynamic K-Java.

2. Key auxiliary notation.

3. Selected expressions, including a few numeric and a
few reference expressions.

4. Selected statements: if, block, while and exception
handling.

5



5. The portion of the configuration representing the
memory model.

6. Rules for variable access for various kinds of varia-
bles.

7. The instantiation of new objects.

8. Method invocation, among the most complex parts
of dynamic K-Java.

9. Multithreading constructs: thread creation, syn-
chronization and wait/notify mechanism.

7 Applications

Here we show how K-Java together with builtin K tools
can be used to explore multi-threaded program behaviors.
The first application is state space exploration and the
second is LTL model-checking.

8 Testing

Testing K-Java took almost half of the overall development
time. Here we describe our testing efforts, which resulted
in what could be the first publicly available conformance
test suite for Java.

6



9 Conclusion

We have presented K-Java, which to our knowledge is the
first complete formal semantics of Java. The semantics
has been split into a static and a dynamic semantics, and
the static semantics was framed so that its output is also a
valid Java program. This way, it can seamlessly be used as
a frontend in other Java semantics or analysis tools. As a
side contribution we have also developed a comprehensive
conformance test suite for Java, to our knowledge the first
public test suite of its kind, comprising more than 800
small Java programs that attempt to exercise all the corner
cases of all the language constructs, as well as non-trivial
interactions of them.

7


	Introduction
	Contributions
	Chapters Summary
	Related Work
	Introduction to K Framework
	Parsing Java Programs
	Static Semantics
	Dynamic Semantics
	Applications
	Testing
	Conclusion


